

Терморегуляторы (клапаны терморегулирующие) типа КТК-У1 (КТК-U1), КТК-У2 (КТК-U2) с термостатическим элементом типа RA 2974

ПАСПОРТ

Продукция сертифицирована на соответствие требованиям Технического Регламента «О безопасности машин и оборудования»

Содержание "Паспорта" соответствует технической документации производителя

Pe∂. № 1 om 01.06.2012

Содержание:

1.	Общие сведения	3
	1.1. Наименование	3
	1.2. Изготовитель	3
	1.3. Продавец	3
2.	Назначение изделия	3
3.	Номенклатура и технические характеристики	4
	3.1. Номенклатура	. 4
	3.2. Технические характеристики клапана	5
	3.2.1. Клапан терморегулятора конвекторный U-образный со стальным корпусом для	
	двухтрубной системы отопления (КТК-У2) с элементом термостатическим модификаці RA 2974	
	3.2.2. Клапан терморегулятора конвекторный U-образный со стальным корпусом для	. 0
	однотрубной системы отопления (КТК-У1) с элементом термостатическим модификац	ии
	RA 2974	6
4	Устройство изделия	7
•	у отроиотье иоделии	• •
5.	Правила монтажа	. 7
_		_
6.	Комплектность	9
8.	Транспортировка и хранение	9
9.	Утилизация	. 9
10). Приемка и испытания	10
11	I. Сертификация	10
12	2. Гарантийные обязательства	10
	abaiii fifii bio oofica i G1D0 i Da	

1.1. Наименование

Терморегуляторы (клапаны терморегулирующие) типов КТК-У1 (КТК-U1), КТК-У2 (КТК-U2) с термостатическим элементом типа RA 2974.

1.2. Изготовитель

ООО "Данфосс", 143581, Российская Федерация, Московская область, Истринский район, сельское поселение Павло-Слободское, деревня Лешково, д. 217, тел. (495) 792-57-57.

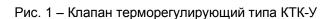
1.3. Продавец

ООО "Данфосс", 143581, Российская Федерация, Московская область, Истринский район, сельское поселение Павло-Слободское, деревня Лешково, д. 217, тел. (495) 792-57-57.

2. Назначение изделия

Терморегуляторы (клапаны терморегулирующие) типов КТК-У1 (КТК-U1), КТК-У2 (КТК-U2) с термостатическим элементом типа RA 2974 - автоматические устройства, обеспечивающие постоянную температуру в помещении, высокий уровень комфорта и энергосбережение. Терморегулятор состоит из клапана терморегулирующего типа КТК-У (КТК-U) и элемента термостатического типа RA 2974.

Корпус клапана терморегулятора изготовлен из стали, что позволяет присоединять его к трубам конвектора с помощью сварки. Клапан выпускается, как для однотрубной, так и для двухтрубной систем отопления. Конструкция клапана для двухтрубной системы отопления позволяет производить предварительную настройку на расчетный расход теплоносителя.



Клапан для двухтрубной системы отопления типа КТК-У2

Клапан для однотрубной системы отопления типа КТК-У1

Pe∂. № 1 om 01.06.2012 3 u3 10

3. Номенклатура и технические характеристики

3.1. Номенклатура

Таблица 1. Номенклатура терморегуляторов

Описание	Кодовый номер		
Клапан КТК-У1 с термоэлементом	013G2141		
Клапан КТК-У1	013G2151		
Термоэлемент	013G2974 или 013G2973		
Клапан КТК-У2 с термоэлементом	013G2142		
Клапан КТК-У1	013G2152		
Термоэлемент	013G2974 или 013G2973		

Таблица 2. Номенклатура клапанов терморегулятора и комплектующих

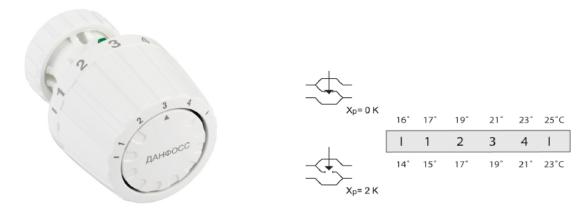

Описание	Кодовый номер
Клапан терморегулятора конвекторный U-образный со стальным корпусом для двухтрубной системы отопления	013G2152
- клапанная вставка	013G8370
- корпус клапана	013L1922
- воздухоотводчик	013L3587
- защитный колпачок (черный)	013G8439
Клапан терморегулятора конвекторный U-образный со стальным корпусом для однотрубной системы отопления	013G2151
- клапанная вставка	013G8670
- корпус клапана	013L1921
- защитный колпачок (зеленый)	013G8469

Таблица 3. Номенклатура и технические характеристики элемента термостатического

Модификация	Кодовый номер	Описание модели	Диапазон настройки, °С п Хр=2°С (0°С)	Диапазон изменения ри температуры воздуха в помещении, °C
RA 2974	013G2974	Со встроенным датчиком	14-23 (16-25)	15-24

Pe∂. № 1 om 01.06.2012 4 u3 10

013G2974

Рис. 2 - Установка температуры на элементе термостатическом модификации RA 2974

3.2. Технические характеристики клапана

3.2.1. Клапан терморегулятора конвекторный U-образный со стальным корпусом для двухтрубной системы отопления (КТК-У2) с элементом термостатическим модификации RA 2974

Таблица 4. Технические характеристики клапана

Перепад давления		Испытательное	Рабочее	Максимальная	
Реком., Макс.,		давление,	давление,	температура,	
бар	бар	бар	бар	C	
0,05-0,2	0,6	16	10	120	

Максимальный перепад давления означает верхний предел, при котором клапан функционирует удовлетворительно. В большинстве двухтрубных систем рекомендуемый перепад давления оказывается достаточным. Для обеспечения бесшумной работы в небольших системах отопления рекомендуется использовать автоматические байпасные клапаны или автоматические балансировочные клапаны. Если перепад давления, создаваемый насосом, превышает рекомендуемый перепад давления на клапане, то в системе отопления рекомендуется дополнительно установить клапан автоматический балансировочный типов ASV-P, ASV-PV.

Таблица 5. Расходные характеристики клапана

	Предварительная настройка								
	Значение Кv, м³/ч								
1	2	3	4	5	6	7	N	N	
0,14	0,21	0,26	0,32	0,46	0,59	0,73	0,87	1,05	

В таблице 5 приведены средние значения расходных характеристик клапанов для варианта их применения с термоэлементом модификации RA 2974. Допустимый диапазон отклонений расходных характеристик составляет ±10%, согласно стандарту EN 215.

Значение K_V означает расход (Q) в м³/ч при потере давления на клапане (Δ p) в 1 бар. $Kv = Q/\sqrt{\Delta P}$. При настройке N значение K_V по стандарту EN 215 соответствует X_P =

Pe∂. № 1 om 01.06.2012 5 u3 10

- 2К. При уменьшении настройки X_P уменьшается до примерно 0,5, что соответствует предварительной настройке 1. Значение K_{VS} означает пропускную способность клапана в полностью открытом положении без термоэлемента. При использовании удаленного регулятора температуры зона P увеличивается в 1,1. При использовании термостатического элемента типа RAW зона P увеличивается в 1,2.
- 3.2.2. Клапан терморегулятора конвекторный U-образный со стальным корпусом для однотрубной системы отопления (КТК-У1) с элементом термостатическим модификации RA 2974

Таблица 6. Технические характеристики клапана

Перепад давления			Испытательное	Рабочее	Максимальная
Реком., Макс., бар бар		давление, бар	давление, бар	температура, °С	
	0,05-0,1	0,15	16	10	120

Максимальный перепад давления означает верхний предел, при котором клапан функционирует удовлетворительно. Для обеспечения бесшумной работы в небольших системах отопления рекомендуется использовать автоматические байпасные клапаны или автоматические балансировочные клапаны. Если перепад давления, создаваемый насосом, превышает рекомендуемый перепад давления на клапане, то в системе рекомендуется дополнительно установить автоматический балансировочный клапан типа AB-QM.

Таблица 7. Расходные характеристики клапана

Значение Kv (м³/ч при △р в 1 бар) Зона Р (K) Kvs							
0,54	1,07	1,57	2,01	2,66	3,50		

В таблице 7 приведены средние значения расходных характеристик клапанов для варианта их применения с термоэлементом модификации RA 2974. Допустимый диапазон отклонений расходных характеристик составляет ±10%, согласно стандарту EN 215.

Значение K_V означает расход (Q) в м³/ч при перепаде давления (Δ p) на клапане в 1 бар. $Kv = Q/\sqrt{\Delta P}$. Значение Kvs означает пропускную способность клапана в полностью открытом положении без термоэлемента. При использовании удаленного регулятора температуры зона P увеличивается в 1,1. При использовании элемента термостатического типа RAW зона P увеличивается в 1,2.

Pe∂. № 1 om 01.06.2012 6 u3 10

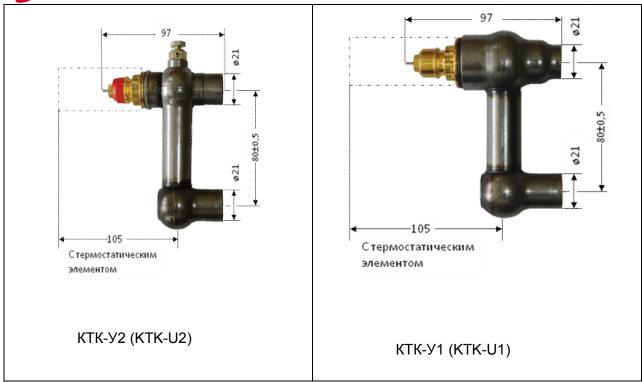


Рис. 3 – Габаритные размеры терморегуляторов.

4. Устройство изделия

Терморегулятор состоит ИЗ клапана терморегулирующего элемента термостатического. Основное устройство элемента термостатического – сильфон, который обеспечивает пропорциональное регулирование. Датчик элемента термостатического воспринимает изменение температуры окружающего воздуха. Сильфон и датчик заполнены легкоиспаряющейся жидкостью и ее парами. Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика часть жидкости испаряется, и давление паров в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный прибор до тех пор, пока не будет достигнуто равновесие между усилием пружины и давлением паров. При понижении температуры воздуха пары конденсируются, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы. Паровое заполнение всегда будет конденсироваться в самой холодной части датчика, обычно наиболее удаленной от корпуса клапана. Поэтому терморегулятор всегда будет реагировать на изменения комнатной температуры, не ощущая температуры теплоносителя в подводящем трубопроводе. Тем не менее, когда воздух вокруг клапана все же нагревается теплом, отдаваемым трубопроводом, датчик может регистрировать более высокую температуру, чем в помещении. Поэтому для исключения такого влияния рекомендуется устанавливать элементы термостатические, как правило, в горизонтальном положении. В противном случае необходимо применять термостатические элементы с выносным датчиком.

5. Правила монтажа

Монтаж, наладку и техническое обслуживание терморегулятора должен выполнять только квалифицированный персонал, имеющий допуск к работам такого рода.

Pe∂. № 1 om 01.06.2012 7 u3 10

Корпус клапана терморегулятора приваривается к трубам конвектора в заводских условиях без клапанной вставки.

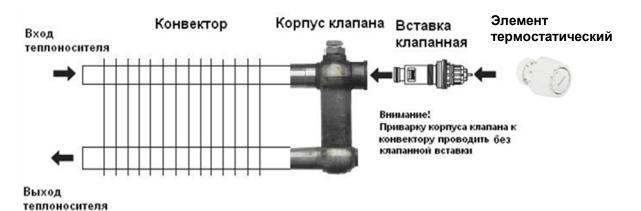


Рис. 4 – Схема монтажа терморегулятора системы отопления.

После остывания корпуса клапана до температуры ниже 120 °C производится установка клапанной вставки (RA-BIV) с усилием затяжки 30 Hm \pm 10 % и воздуховыпускного клапана (для двухтрубного варианта исполнения) с усилием затяжки 6 Hm \pm 10 %.

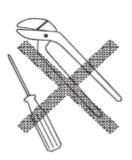
Затем надевается защитный колпачок, заворачивается до упора, и производятся гидравлические испытания изделия при давлении не более 16 бар.

После гидравлических испытаний производится покраска конвектора с клапаном. Температура в покрасочной камере не должна превышать 120 °C.

После установки конвектора в систему отопления на клапан терморегулятора устанавливается термостатический элемент. Эксплуатация клапана без элемента термостатического не допускается.

Установку элемента термостатического модификации RA 2974 производить в следующей последовательности:

- снять с клапана защитный колпачок,
- перед установкой элемента термостатического модификации RA 2974на клапан совместить максимальное значение шкалы настройки с зеленой меткой на хвостовой части элемента термостатического модификации RA 2974,


Рис. 5 – Элемент термостатический модификации RA 2974

- установить элемент термостатический модификации RA 2974 на клапан таким образом, чтобы зеленая метка находилась в зоне видимости пользователя,

Pe∂. № 1 om 01.06.2012 8 u3 10

- при установке элемента термостатического модификации RA 2974 на клапан выступы внутри хвостовой посадочной части элемента термостатического должны войти в пазы посадочной части клапана,
- закрутить гайку элемента термостатического модификации RA 2974 на клапане рукой, не используя гаечный ключ.

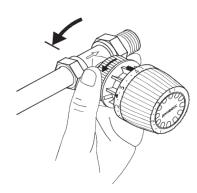


Рис. 6 – Порядок установки элемента термостатического на клапан терморегулятора

6. Комплектность

В комплект поставки входят:

- корпус клапана терморегулятора;
- клапанная вставка;
- защитный колпачок;
- воздухоотводчик (для двухтрубного варианта);
- элемент термостатический типа RA;
- паспорт.

7. Меры безопасности

Для предупреждения травматизма персонала и повреждения оборудования необходимо соблюдать требования эксплуатационной документации производителя на установленное оборудование, а также инструкции по эксплуатации системы.

Качество сетевой воды должно удовлетворять техническим требованиям, п.4.8.40 ПТЭ. (Правила технической эксплуатации электрических станций и сетей российской Федерации)

8. Транспортировка и хранение

Транспортировка терморегулятора (клапана терморегулирующего) типа КТК-У (КТК-U) с термостатическим элементом типа RA осуществляется всеми видами транспорта в соответствие с правилами перевозки грузов, действующими на транспорте данного вида.

Терморегуляторы следует хранить в упакованном виде в закрытом помещении или под навесом и обеспечить их защиту от воздействия влаги и химических веществ, вызывающих коррозию материалов.

9. Утилизация

Утилизация изделия производится в соответствии с установленным на предприятии порядком (переплавка, захоронение, перепродажа), составленным в соответствии с Законами РФ № 96-ФЗ "Об охране атмосферного воздуха", № 89-ФЗ "Об

Pe∂. № 1 om 01.06.2012 9 u3 10

отходах производства и потребления", № 52-Ф3 "О санитарно-эпидемиологическом благополучии населения", а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во исполнение указанных законов.

10. Приемка и испытания

Продукция, указанная в данном паспорте, изготовлена, испытана и принята в соответствии с действующей технической документацией производителя.

11. Сертификация

Терморегуляторы (клапаны терморегулирующие) типа КТК-У (КТК-U) с элементом термостатическим типа RA сертифицированы на соответствие требованиям Технического регламента «О безопасности машин и оборудования». Имеется сертификат соответствия № C-RU.AИ30.02890, срок действия с 16.03.2012 по 15.03.2017.

12. Гарантийные обязательства

Изготовитель/продавец гарантирует соответствие терморегулятора (клапана терморегулирующего) типа КТК-У (КТК-U) с элементом термостатическим типа RA техническим требованием при соблюдении потребителем условий транспортировки, хранения и эксплуатации.

Гарантийный срок эксплуатации и хранения составляет — 12 месяцев с даты продажи, указанной в транспортных документах, или 18 месяцев с даты производства.

Срок службы терморегулятора (клапана терморегулирующего) типа КТК-У (КТК-U) с элементом термостатическим типа RA при соблюдении рабочих диапазонов согласно паспорту/инструкции по эксплуатации и проведении необходимых сервисных работ – 10 лет с даты продажи, указанной в транспортных документа.

Ред. № 1 om 01.06.2012